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INTRODUCTION

ABSTRACT

Disasters frequently disable the electrical grid, jeopardizing communication infrastructure
and causing severe disruptions in emergency communications. Ensuring rapid deployment
of power sources for base stations (BSs) is therefore critical in post-disaster conditions. This
study presents a mixed-integer linear programming (MILP) framework that dispatches a fleet
of electric vehicles (EVs) to energize multiple BSs and maximizes population-based temporal
communication coverage (people x time). In a case study involving 20 BSs and 10 EVs, the
optimization prioritizes early service to densely populated areas and delivers a total of 17,597
people for 228 minutes of communication access. Although the served population gradually
declines as the energy of the EV fleet depletes, the connectivity is sustained until 16:34. Results
demonstrate that feasible EV-BS assignments and service durations are obtained considering
BS power demand, coverage areas, and EV initial energy parameters. The proposed model
enables communication availability after disasters without relying on additional fixed power
resources.

Cite this article as: Kilic R, Candan AK, Boynuegri AR. Post-disaster EV dispatch for
powering base stations: a MILP approach to maximize spatiotemporal coverage. Clean
Energy Technol ] 2025;3(2):39-49.

centered in Kahramanmaras, Tiirkiye, starkly revealed this
vulnerability: of the 8,900 cellular base stations (BSs) across

In recent years, natural hazards, particularly earth-
quakes and floods, have increasingly threatened critical in-
frastructure systems. Power outages following such events
trigger cascading service disruptions, severely interrupting
daily life. Among the most rapidly affected are communi-
cation networks, whose continuity is indispensable during
post-disaster response and recovery [1]. The earthquake
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the ten affected provinces, 2,451 (28%) became non-oper-
ational. Although more than 400 mobile BSs with satellite
backhaul were deployed, their operation relied on diesel
generators (DGs) capable of providing only 3-4 hours of
autonomy. Repeated service interruptions occurred due
to severe fuel-logistics constraints [2,3]. Ensuring a stable
power supply for BSs, the backbone of cellular communi-
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cation networks, therefore becomes a major challenge un-
der disaster conditions. Traditional power sources are often
inaccessible or insufficient, highlighting the need for flex-
ible and rapidly deployable alternatives. Previous research
has explored hybrid architectures. Rahman et al. [4] pro-
posed a resilient hybrid energy system (RHES) integrating
photovoltaic (PV) generation, proton exchange membrane
(PEM) fuel cells, and battery energy storage coordinated
through an intelligent energy management system (EMS).
The RHES was designed to autonomously supply Base
Transceiver Stations (BTS) in grid-independent emergency
scenarios. Simulation results demonstrated that BTS oper-
ability could be sustained even during prolonged outages,
thereby maintaining reliable communication services. Sim-
ilarly, Unal and Dagteke [1] developed PV fuel cell hybrid
systems capable of providing uninterrupted renewable pow-
er to BS following disasters. In addition, Okundamiya et al.
conducted a comprehensive assessment of renewable-en-
ergy-based hybrid power systems for mobile telecommu-
nication sites, demonstrating that PV-wind-battery con-
figurations can significantly reduce operational costs and
enhance BS power reliability in regions with unstable grid
access[5]. In a comprehensive survey, Cabrera-Tobar et al.
emphasized the vulnerability of telecommunication infra-
structure, particularly BSs, to power interruptions stem-
ming both from technical failures and climate-induced haz-
ards. To mitigate these risks, the authors examined a broad
set of resilience strategies structured around the phases of
preparedness, response, and recovery, including mobile
DGes, electric vehicle (EVs) fleets, energy storage systems
(ESSs), and stand-alone microgrids (MGs) [6]. Rudenko
et al. [7] similarly highlighted that replacing DGs used for
mobile BSs with hybrid systems combining hydrogen fuel
cells, solar power, and wind energy can ensure reliable off-
grid operation while reducing environmental impacts. Such
hybrid configurations play a key role in enhancing the sus-
tainability and resilience of telecommunication systems.

Motivated by the growing need for rapidly deployable
power solutions for communication systems in post-disas-
ter conditions, this study proposes an optimization-based
framework for supplying energy to BS using EVs. The model
jointly determines the allocation and scheduling of multiple
EVs, each with a distinct initial state of energy (SOE), to BS
that differ in power requirements and coverage areas [8]. The
objective is to identify the most effective EV-BS matching
by maximizing a population-temporal accessibility metric,
defined as the product of the number of communications
served people and the duration of service provision. The pri-
mary contributions of this work are summarized as follows.

A post-disaster EV fleet management framework de-
signed to sustain and extend the operational availability of
cellular communication services by supplying emergency
power to BS.

Highlights

o MILP model optimizes EV dispatch and BS activation
under energy limits

o Cell-based population metrics maximize spatiotemporal
coverage.

o Framework extends BS operation without fixed power
infrastructure.

A rigorous optimization model that, under EV energy
and mobility constraints, determines optimal EV-BS allo-
cation strategies to maximize population-temporal accessi-
bility during disaster-induced grid outages.

The remainder of this article is organized as follows.
Section 2 (Methodology) describes the overall system mod-
el, outlines the modeling assumptions, and formally states
the problem. This section also elaborates on the popula-
tion-time accessibility metric, together with the decision
variables and the full set of optimization constraints. Sec-
tion 3 (Results) presents the case study configuration, pa-
rameterization, and numerical results derived from the
proposed framework. Finally, Section 4 (Conclusions) pro-
vides a comprehensive synthesis of the findings, interprets
the implications of the results for post-disaster communica-
tion resilience, and highlights promising avenues for future
research.

MATERIALS AND METHODS

This study examines a post-disaster scenario in which cel-
lular BS are subjected to a prolonged grid outage and an EV
fleet is deployed as a mobile power supply resource. Each BS
is characterized by a fixed power demand and an associated
population density within its coverage area, while each EV
is defined by its initial SOE and maximum power delivery
capability. Since the number of BSs exceeds the number of
available EVs, only a limited subset of BSs can be energized
at any given time. Moreover, heterogeneous BS types pos-
sess different coverage capabilities and consequently differ
in the number of users they can serve. Under these con-
ditions, the system operator must determine, over a finite
planning horizon, which BS will be energized by each EV
while considering the activation duration of each EV-BS
assignment. To address this decision-making problem, an
EV dispatch strategy is formulated as a mixed-integer linear
programming (MILP) optimization model.

EV-BS Spatial Configuration and Distance Computation

The primary objective of the proposed optimization algo-
rithm is to maximize the cumulative population-time ac-
cessibility (people x time) by ensuring the continuous ener-
gization of BS throughout the disruption horizon following
a disaster. Let the discrete time domain be represented by
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[t.e,b] 0, otherwise (6)
A Base Station
Electric Vehicl
8 o eemerenee The variable At 5 (6) is defined as a binary indicator spec-
r =]
EV03 ifying whether EV e has arrived at BS b at time t. The in-
6| dicator takes the value A p = 1 when the EV reaches the
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2 - B11 - ]
r oA Evoo EY02 (e, b) pair (7).
VoI B12 AS—1
= 0 ’Evgs Ba Bﬁ B02 _
;5: BO8 A A[t,e,b]_ 1 (7)
2| . a B19 P}
B& A
4 b A Coverage Cells and Population Density
A EVOS The computation of cumulative population-time com-
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o T carried out over a cell-based grid system. The two-dimen-
B sional grid is constructed using a uniform coordinate struc-
‘ b ‘ ture defined along the X and Y axes, with each grid cell rep-
° X(k:]) ° resented by its centroid, denoted as X; = (x;,¥;). The grid
dimensions are given by | X [X| Y |, and the total number

Figure 1. Cartesian coordinates of EV and BS.

t €T, the set of BSs by b € B, and the set of EVs, utilized as
mobile power sources, by e € E. Prior to the disaster event,
the spatial positions of the EV fleet are defined in a Carte-
sian coordinate system as X;¥ € R* (1), while the geograph-
ical locations of the BS are similarly represented as X;° € R?
(2), as illustrated in Figure 1. Based on these spatial rep-
resentations, the Euclidean distance between each EV and
each BS at the initial time step t = 0 is denoted by Bep (3).
Using this rate, the total travel energy required for EV e to
(4). These definitions col-
lectively establish the fundamental spatial and energetic

reach BS b is computed as Ef3"

relationships governing the EV-BS assignments within the
proposed optimization framework.

X&' = (", ye" ) € R? (1)
Xy = (%, y5°) € R? 2)
2
Brow = G =3+ OF = P lem)
Erf® =y . By [watt.min] (4)

Once an EV arrives at its determined BS, it immediately
initiates the power supply. The corresponding travel time
required for EV e to reach BS b is formally denoted as tyq(e )
(5.

(5)

Ble, ,
Larrleb] = [%] [min]

of cells is denoted by C. Each grid cell has a side length of D
[km)], and its area is defined as A, = PCA = D?[km?],

For each BSb € B = {1, ..., B}, a coordinate vector X£5(2)
and a coverage radius 7p are defined. Using these parame-

18%C is constructed for all

ters, a coverage matrix Sy, . € {0,1
grid cells. The matrix entry S, . = 1 if cell ¢ lies within the
coverage area of BS b, and S}, = 0 otherwise. In addition,
a binary variable N, . (8) is introduced to indicate whether
cell ¢ is covered by at least one BS.

(8)

ND,C = 1{2 Sb,C > 0}

b €EB

To spatially represent post-disaster population density
within the model, macro-circles (macro coverage areas) are
defined. For each macro-circle m € M, the center coordi-

nates ¢ = (X, ¥m), the radius Ry, the central population

d
density Pr(,ﬁemer), and the edge population density Pr(,i %) are

specified. The Euclidean distance between the center of
macro-circle m and the center of grid cell ¢ is computed by
dm (), as given in Equation (9).

)

If the d,,(i) < R,,, the cell is considered within the cov-
erage area of macro-circle m. In this case, the population
density assigned to the cell is computed as P (1) (10) Inside
the macro-circle d,, (i) < R,y
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pm(i) = pre;ldge + (prcrfnter _ pre;ldge)
i 10
Rin

Not contained within macro-circle m, where d,,, (i) > R,:
pm () =0 (11)

A linear decay function is defined for the macro-circle
population density such that the density attains its maxi-
mum value at the macro-circle center and decreases to a
minimum at the outermost cells. If a cell lies beyond the

macro-circle, its population density is assigned as pm (i) = 0
(11). Since a cell may fall within the coverage areas of multi-
ple macro-circles, the final macro-circle population density
is determined as Pmax(1) (12) which corresponds to the
maximum value among all macro-circles for that cell.

pmax(i) = marﬁpm(i) (12)

Finally, the overall population density for each cell
is defined as p.. If the cell lies within macro-circles, its
value is assigned as Pc = Pmax(i). For cells outside the
macro-circles, the density is determined based on their
coverage status, ensuring a seamless transition between
high-density macro regions and the surrounding settle-
ment area. In this manner, a continuous, cell-based pop-

m BS Coverage Area

Macro Circle Population Density

Y (km)

Figure 2. Coverage areas of the BSs and the population
density distribution.

ulation density function is established across the entire
study region.

Through this formulation, the population density can be
represented on the grid plane as a parametric and com-
putationally tractable function, allowing coverage maps
to be directly integrated into the optimization model. In
post-disaster scenarios in particular, these macro regions
correspond to critical settlement areas. Figure 2. presents
the resulting population density map, which includes both
the macro regions and the coverage areas of the BSs.

Energy and EV-Base Station Matching
The total amount of energy that can be supplied to all BSs
is constrained by the initial SOE of the EV fleet (13).

E
PS, . = Z SOEM [Watt.min] (13
e=1

At the beginning of the disaster response, each EV is
required to be assigned to a single BS. To represent this al-

location, the binary variable BE""* is introduced, indicating
whether

EV eis assigned to BS b. This formulation ensures that every
EV is allocated to only one BS.

B
EV,L __
Z Be'b - 1
b=1

In addition, to ensure that each BS can receive at most
one EV:

(14)

E

P AEES

e=1

(15)

The EV-BS assignment is modeled as a one-to-one match-
ing. This structure prevents any vehicle from being assigned
to multiple BSs simultaneously and likewise ensures that no
more than one vehicle is located at a given BS. As a result,
the distribution of energy across BSs becomes balanced and
operationally manageable.

This equality expresses, in a time-traceable manner, the BS
to which each EV is assigned. For this purpose, a continu-
ous index variable EV, , (16) is defined. The BS assignment
determined for each EV at the beginning of the disaster
remains fixed throughout the entire time horizon; this re-
quirement is enforced by the following equality:

TBSN-1

EV,L
EVipe = Z b.B,, (16)
b=0

Base Station Energy Balance

The time-dependent SOE for each BS is denoted by SOE{)
(19). This SOE level is updated through an energy-balance equa-

tion that incorporates the previous SOE SOE?tS_Lb), the energy
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consumed during the preceding time step B, (t 1 b), and the net
amount of energy delivered by an EV upon arrival SOE(“,) (17).
In this statement, SOE;*denotes the initial energy available in
EV e, while E| (ter %’felrepresents the amount of energy the vehicle
must expend to reach BS b. Prior to the beginning of the disaster,

the initial SOE of all BSs is assumed to be zero, i.e., SOE?OS, p =0
(18).

TEVN-1
arr —_ BEVL SOEim't
Z (SOEe (17)
—ESD). A
SOEE; =0 (18)
SOEfy = SOE®, , — BXh, + SOEST (1)

The inequality SOEﬁf b) (20) stabilizes the initial state of
the system, ensuring a consistent progression of the time
series. Moreover, this requirement prevents the SOE vari-
able from ever taking negative values, thereby preserving
the physical validity of the model.

SOEES =0 (20)

To enable EV to supply power to BS, each vehicle must
possess a sufficient amount of battery energy to reach the
corresponding BS. Accordingly, for every EV e € E and ev-
ery BSb € B, an accessibility binary variable REACH, , (21)
is introduced. This variable is determined by comparing
the initial SOE of the EV with the travel energy required
to reach BS b. A value of REACH, , = 1 indicates that EV
has adequate energy to reach the BS, whereas REACH, ,, = 0
signifies that it does not.

Etravel

: init
REACH,, = {1’ if SOE (1)

0, otherWlse

Based on these definitions, an EV can only be assigned
to BSs that are energetically reachable, i.e., BSs for which
the required travel energy does not exceed the vehicle’s ini-

tial energy. Accordingly, the assignment variables B<eb) are
restricted by this accessibility mask, which is formally ex-
pressed in (22).

EV,L
BE* < REACH,, (22)

If REACH, ), = 0, the assignment of EV e to BS b becomes
mathematically infeasible; consequently, any physically un-
reachable assignment combinations are automatically ex-
cluded from the model. For each BS, the power consumed
when the BS is active Ptffs'A) (23), is expressed directly in
terms of its nominal power capacity. This relationship is de-
fined by the following equality:

BS,A __
Pt,b - Plf' Ut,b (23)

This equality expresses P ) as the power consumption
of BS bat time t. The term Pb denotes the nominal power ca-
pacity of the BS, while U, ;, (24) is a binary decision variable
indicating whether the BS is active at that specific time step.
When Uy, = 1, the BS is operational and draws its nominal
power; when Uz, = 0, the BS is inactive and its power con-
sumption becomes zero.

Up € {0,1} (24)

The SOE of BS b at time t, expressed as SOEZS(25), rep-
resents the total amount of energy stored at that BS. This
quantity is constrained to remain non-negative at all times.

SOE >0 (25)

A BS can be activated only if its SOE exceeds a pre-
defined minimum operational threshold. This operational
condition (26) is formulated as follows.

SOE > SOEM™™, Up (26)

When Ugp = 1, BS b can be activated at time t; when,
U¢p = 0BSb cannot be activated at time t. At the beginning
of the post-disaster (i.e., t=0), all BS are assumed to be inac-
tive (27). This assumption implies that no energy supply or
EV deployment is available at the moment the disaster oc-
curs. Consequently, it removes any ambiguity regarding the
initial SOE of the BS and the timing of the first activation.

Upp =0 (27)

At each time step, the number of BSs that can be activat-
ed is physically limited by the number of available EV, since
activating any BS requires at least one energy source. This

constraint (28) is formulated as follows.
TBSN-1

Z Uyp <TEVN
b=0

(28)

With this approach, an upper bound is imposed on
multiple BSs are activated that can be simultaneously active
at any given time step. This constraint enhances the consis-
tency of the model with real-world operational conditions
and prevents physically infeasible scenarios involving un-
limited BS activations. On the other hand, for a BS to be-
come active, there must be at least one EV at its location. As
mentioned earlier, activation is not possible in any location
where there is no EV. This relationship is expressed as fol-

lows.
TEVN-1

Upp < Z BEL* (29)
e=0

As previously stated, the binary decision variable B 5};,’1“

indicates whether EV eislocated at BS b. If no EV is assigned
to BS b, the right-hand side of the constraint becomes zero,
implying U, , = 0. A BS can be activated only if exactly one
EV is located at that position and sufficient SOE is available.
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Conversely, there is no activation at any BS where no EV is
present, ensuring that U, , < 1.

The activation of a BS b is not solely contingent upon an
EV e being assigned to that BS but also requires that the EV
physically arrives there within a specific time step t. For this
reason, BS activation is formulated with explicit consid-
eration of EV arrival times. As previously introduced, the
arrival indicator A; , j, (8) captures this temporal condition.
Considering these conditions, an arrival matrix A¢ ; (30)
is defined to indicate whether an EV remains present at a
BS b during all time steps following its arrival. This matrix
captures the temporal persistence of an EV at BS after it
reaches the location.

AT, = 1<ZA,eb >o>

This expression indicates whether the EV has arrived at
the BS at some time 7 < t. Accordingly, the indicator A%,
takes the value 1 for all time steps following the arrival of
EV e at BS b. The activation of a BS is formalized through
the product of the assignment variable and the arrival ma-
trix. This relationship (31) is expressed formally by the fol-
lowing equality.

EV,L arr

eEeE

(30)

(31)

The capability of a BS to be activated precisely at the
moment of an EV’s arrival is represented by the variable
Ugy' (32). This binary decision variable, Ugy' € {0,1}, takes
the value 1 only at the exact time step when the EV reaches

BS b, and remains 0 at all other times.
TEVN-1

Z BEV L Do

The variable Uf}' functions as a binary triggering mech-
anism within the dec1si0n structure of the model. When an
EV arrives at its corresponding BS, this variable enables the
initiation of activation at time t. If an EV is both assigned to
that BS and reaches it at the exact arrival time, then U3’ =

, thereby allowing the BS to be activated. In summary, U5’
is an internal model variable that triggers a specific dec1510n
mechanism. In contrast, A, is a pre-computed indicator
determined by parameters such as travel distance, aver-
age speed, and departure time. With respect to the energy
threshold, the arrival of an EV alone is not sufficient for
activating a BS at the moment of arrival; the minimum re-
quired energy level must also be satisfied. This condition is
formally imposed by constraint (33).

(SOEES, , + SOEHT) = (SOEM™). Usen

(32)

(33)

When this energy threshold is satisfied, the activation
of the BS becomes appropriate and is mandatorily triggered
(34). However, if the required energy level is not available,

the BS remains inactive even if U3’ = 1; in such cases, the

energy-threshold constraint prevents activation.

Uy 2 Ugp" (34)

Base Station Deactivation Condition

The activation status of each BS at time is represented
by the binary decision variable Uy ) € {0,1}, as previously
defined. A transition of a BS from the active state to the
inactive state (i.e.,1 = 0) is classified as a deactzvatzon event.
To capture this event, a binary indicator Ut y €1{0,1}(35) is
utilized. The detection of a deactivation event is formally
defined by the following linear inequality:

Uoff> Ut-16 = Usp (35)

Considering this shutdown indicator, inequality (36)
provides a consistent criterion for determining the physical
conditions under which a BS can transition from an active
state to a shutdown state. The left-hand side of the inequality,

SOEES,, + SOEZ"

Represents the total amount of energy effectively avail-
able at BS at the beginning of time step t. This total con-

sists of the energy carried over from the previous minute,

SOEfS, }, and the net arrival energy SOE®}", which is trans-

ferred only if an EV reaches the BS precisely at minute t.
The arrival energy is zero at all other time steps. The right-
hand side of the inequality,

SOE™™ + pf

Defines the highest permissible energy level at which a
shutdown event can be considered physically feasible. This
threshold ensures that the BS cannot be switched off as long
as it possesses sufficient energy to meet its mandatory safety
reserve SOEM™ and its nominal one-minute power demand

Py. Therefore, a shutdown is physically meaningful only when
SOEPS, , + SOEY" < SOE™™ + Pf

Is satisfied.

The Big-M term,
M;))f f (1 Of f )

Ensures that this threshold condition is enforced only
when the model attempts to issue a shutdown decision. If
U, of " =1 (ie., a shutdown is being attempted), the Big-M
term vanlshes and the inequality becomes binding; in this
case, if the total energy exceeds the threshold, constraint
(36) would be violated, preventing the model from shut-
t1n§ down the BS. Conversely, if no shutdown is triggered

/= 0), the large value of M " relaxes the constraint,
av01d1ng any artificial restr1ct1on on the natural evolution
of the energy stock and allowing the BS to continue oper-
ating normally. Bringing all components together, the shut-
down condition is formally expressed as: SOEE”, , + SOEZ}"
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< SOEM™ + pf + M)

(1 _ Ugl/:f) (36)

This formulation ensures that BS shutdowns occur only
under physically meaningful energy conditions, thereby
preserving both the operational realism and the temporal
consistency of the model.

Coverage Cells and Total Population

In this section, to enable an accurate assessment of the
total covered area and total covered population, the cov-
erage areas of the BSs are considered not only in terms of
their geographic locations but also with respect to their
mutual overlap relationships. Accordingly, the model de-
fines two fundamental concepts using the cell-based cov-
erage map Sp.c.

Pattern coverage: refers to regions in which multiple
BSs simultaneously cover the same cell.

Single coverage: refers to cells that are covered exclu-
sively by a single BS.

This distinction eliminates potential double-counting
issues, ensuring that the population contained within each
cell is accounted for exactly once in all calculations. Defini-
tion of Cells and Population Density:

o Cell area: Acen = PCA [km?/cell]
o Cell population density: p.[people/cell]

The coverage status of the BSs is represented by the bi-
nary matrix S, . € {0,1}. This matrix identifies, for each cell,
which BS provide coverage, thereby explicitly characterizing
the active coverage relationships across the grid. Subsequent-
ly, these two data sets are aggregated within a linear frame-
work by linking them to the time dependent activation status
of the BS. The notation used throughout this formulation is
as follows: b € {1, ..., B} denotes the set of BSs; ¢ € {1, ..., C}
denotes the grid cells; p € {1, ..., P} represents the coverage
patterns; and t € {1, ..., T} corresponds to the time steps.

Pattern Coverage

In this study, a pattern is defined as a subset of cells that
are simultaneously covered by multiple BS. Each pattern p
is represented by a vector indicating which BS contribute
to that pattern. The pattern-BS relationship is expressed by
the binary parameter PT,;, € {0,1}, where PT,,, = 1denotes
that BS b is part of pattern p.

1if BS b is part of pattern p

PT,, = 10 otherwise (37)

Coverage Cell and Pattern

The pattern to which a cell belongs is determined by the
exact matching between its coverage vector and the corre-
sponding pattern vector.

1r
My = {0,

In other words, a cell is regarded as belonging to a par-
ticular pattern if the set of BSs covering that cell coincides
exactly with the BS set defined by that pattern.

PTP=SC

38
otherwise (38)

Single Coverage

In order to obtain the cell-level coverage structure of the
BSs in a detailed manner, the coverage degree deg(c)(39)
associated with each cell is first defined. For this purpose,
by using the binary coverage matrix S, € {0,1} defined
over the set B of BSs and the set of C cells (where S, . = 1if
BS b covers cell ¢), the coverage degree of each cell is com-
puted as

deg(c) = Z Spe, CEC (39)

bEB

The coverage degree deg (¢) indicates how many differ-
ent BSs cover cell ¢, and it plays a fundamental role in deter-
mining the single-coverage condition. Accordingly, in or-
der to distinguish the cells that are covered by only one BS,
a cell-based binary singularity indicator (40) is defined as

1, if deg(c) =1,
He = {0, otherwise,

This indicator mathematically labels the cells under sin-
gle coverage and enables the separation of multiple-over-
lap regions within the coverage matrix. To extend the
single-coverage structure to the BS-cell dimension, the in-
dicator H, is multiplied by the coverage matrix, and a new
matrix (41) is obtained as

Gb,c = Sb,c Hc'

ceC (40)

beB,ceC (41)

Thus, Gy = 1 occurs only under the following condi-
tions: (i) cell is under single coverage (H. = 1), and (ii) the
only BS covering this cell is b (S, . = 1). Therefore, the ma-
trix Gy, . precisely identifies the single-coverage area specific
to each BS by automatically separating multi-coverage areas
and uncovered cells. Using this structure, the total number
of cells in the single-coverage area of BS b is defined as

legl = Z Gb,c
c

and it is employed as a quantitative indicator of the sin-
gle-coverage capacity.

(42)

Computation of Average Single-Coverage Population
Density

For each BS, the number of cells exclusively covered by
that BS was defined earlier. Building on this definition, the
total population residing within these single-coverage cells
is denoted by Rj (Equation 43).

Rls; = Z Gb,c -Pec
c

(43)



46

Clean Energy Technol J, Vol. 3, No. 2, pp. 39-49, December, 2025

By taking the ratio of these quantities, the average popu-
lation density under single coverage for each BS is obtained
as pj (44).

Ry

max (N9

55 —

(44)

Computation of Average Pattern-Based Population
Density

In this expression, n, (45) denotes the total number
of cells covered by pattern p. Each pattern p represents a
structural coverage configuration characterized by its own
distinct set of BS.

np = ZMp.c
c

R}, (46) represents the total population contained within
the cells covered by pattern p and is expressed as follows.

Rp = Z Mp,c-pc
c

In this context, R, captures the aggregate population
contained solely within the cells associated with pattern p.
Patterns corresponding to densely populated regions natu-
rally yield larger Ry, values, whereas those representing ru-
ral or sparsely populated areas exhibit comparatively lower
population totals. Consequently, through these two expres-
sions, the average population density for pattern p, denoted
by pp (47), is obtained.

(45)

(46)

_ Ry

~ max (ny) (47)

Pp =

Population and Cell Count Coeflicients

a,: expresses the number of grid cells associated with
coverage pattern p, that is, the cells jointly covered by the
same combination of BS. Likewise, @, expresses the number
of grid cells that are exclusively covered by BS b, with no
overlap from any other BS. Using these parameter values,
the total population within the single coverage area of BS b
a fixed coeflicient is computed as @,

Y = ap.py (48)

The total number of people contained within the region
corresponding to pattern p, which represents the overlap area,
is computed as a fixed coefficient and is expressed as ¢ (49).

Yp = Ap-Dp (49)

Pattern Activation Constraint

For a pattern p to be activated (£, = 1), at least one of
the BSs constituting that pattern must be active, and this
requirement is expressed by inequality (50). If pattern p is
not active (Z,; = 0), none of the BSs associated with that
pattern is allowed to operate, and this condition is captured
by inequality (51).

U¢ p € {0,1} BSs activation decision variable

Zy,¢ € {0,1} pattern activation variable, whether pattern
p is active at time t is determined by its corresponding acti-

vation variable.
> Uz 2,

(50)
bEB
Uth = Zp,t (51)

Total Population Served

At time step ¢, the total population served is defined as
the weighted aggregation of all active coverage patterns and
active single-coverage BS regions, where @p denotes the
population weight of pattern p and @p represents the mean
population coefficient associated with the single-coverage
area of BS b. This relationship is expressed as

POP, = Z Op Zpt
peP
+ Z(pb-Ut,b> [person]

beB

(52)

Objective Function

The objective is to maximize the total number of
people served within the communication coverage area
throughout the disaster period. This is formulated as fol-

lows in (53).
As
maxz POP;
t=1

This objective function implicitly governs the allocation
of energy-supplying EV to BS by steering the optimization
process toward configurations that yield the greatest com-
munication reach. In effect, it mathematically determines
which subsets of BS should be activated so as to maximize
the population maintained under operational coverage
throughout the disaster period.

(53)

RESULTS

The case study focuses on the district of Antakya, locat-
ed in the Eastern Mediterranean region of Tiirkiye and one
of the areas most severely affected by the Kahramanmarag
earthquakes of 6 February 2023. The test system consists
of 20 BSs serving all mobile network operators in Antakya
and 10 EVs that can be deployed as mobile power sources.
The initial SOE levels of the EV fleet are provided in Table
1. For operational safety, each EV is assigned a minimum
SOE threshold of SOEM™™ = 1000 = 60 [Watt.min] (17) (1
kWh), which must be preserved in the battery at all times
and cannot be used for powering BSs. For mobility model-
ing, a constant travel-energy consumption rate of y = 9000
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Table 1. The initial (SOE) of the EVs. Table 2. Coverage areas and power consumption of BSs.
EVs Initial SOE (kWh) BS index BSs coverage area (km?) BSs power (Watt)
1 71 1 3.7 4000
2 66 2 4.1 5000
3 61 3 4.5 6000
4 56 4 5 4500
5 51 5 5.7 5500
6 46 6 6.6 6500
7 41 7 6.9 4200
8 36 8 4.1 5200
9 31 9 4.5 6200
10 26 10 5.1 4800
11 5.7 5800
W-min per kilometer is assumed for all EV, reflecting anav- 12 6.4 6800
erage traction demand during displacement. Additionally, |5 6.9 4100
the average travel speed of the EVs is modeled as uniform
and set to V,,, = 50/60 km per minute, providing a consis- 14 4.1 >100
tent basis for computing travel times across the network. 15 4.7 6100
During the earthquake, 64 of the 67 rooftop BSs in Antakya 16 5.1 4300
were destroyed or seYerely damaged, whereas 32 of the .34 17 58 5300
tower-type BSs remained operational [9]. Consistent with
these findings, a tower-based configuration representative 18 64 6300
of urban/suburban deployments has been adopted as the 19 6.9 4900
reference model in this study. In the population model used 29 4.1 5900

in this case study, cells located outside all macro-circles
but within the coverage area of at least one BS are assigned
a density of P, = 20 people per cell, while cells lying out-
side both macro-circles and BS coverage areas are assigned
P. = 5people per cell.

The proposed MILP model was developed in Python and
solved using the Gurobi Optimizer (version 11.0.3). All simu-
lations were performed on a computer with an Intel i5-7200U
processor and 12 GB of memory. The total solution time for
the Antakya case study was approximately 31 minutes.

The power requirements of BS vary on the order of sev-
eral kilowatts, depending on factors such as radio configu-
ration, transmission power, and site-specific auxiliary loads
(e.g., cooling). Capacity-oriented small-cell deployments
in higher frequency bands (e.g., 1800-2600 MHz) typical-
ly consume up to approximately 1 kW[10] [11], whereas
macro sites operating in sub-GHz bands (e.g., 700/800/900
MHz) and providing wide-area coverage may require 5 kW
or more when cooling and ancillary systems are included
[4][12][13]. Cooling alone often accounts for 25-30% of
total site energy consumption[14][15]. For this reason, the
study incorporates different BS types. The BS-specific pow-
er demands and coverage radii used in the case study are
reported in Table 2.

In this model, the EVs begin supplying power to the BSs
starting from minute 2. By minute 21, all EVs have reached

their assigned BSs and have energized them using their ar-
rival SOE SOE{. At minute 21, the total number of peo-
ple able to maintain communication reaches its maximum
value of 17,597, as demonstrated in Figure 3. This result is
reported in Table 3.

The matching between the EV and the BS is provided in
Table 3. Based on these assignments, the energy consumed
by each EV while traveling to its designated BS is computed,

18000
16000 J | BS9
BS 20
14000 l BS 10
BS 11
= 12000
9 BS 4
S __ 10000 BS 19
g 2 BS1
[e) Q
e § 8000 —BS16
2 = 6000 | BS 13
5] L BS7
>
o
3 4000 —L
©
£ 2000
. i
0 L L
S S & & S S S S S S S
S .S S S PSS S S
S FF S E R PP
Time (hours)

Figure 3. Population covered by bss post-disaster (people).
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Figure 4. EV SOE at the time of post-disaster BS energization.

Table 3. The energization of BSs by EV's as a function of activation
time, and the total number of people able to communicate.

hubwiontme gy, gy, Toleowee
t=2 7 4 1.544
t=3 9 10 3.372
t=4 5 1 4.460
t=5 2 13 6.666
t=7 1 7 10.575
t=7 3 16 10.575
t=9 6 11 14.038
t=9 8 20 14.038
t=12 10 9 15.673
t=21 4 19 17.597

Table 4. EV arrival SOE at BSs and EV-BS distances.

Activation EVs BSs Distance between EVs arrival
Time [Min] EVsand BSs [km] SOE [kWh]
t=2 7 4 1.4 40.78
t=3 9 10 2.4 30.65
t=4 5 1 2.9 50.56
t=5 2 13 34 65.49
t=7 1 7 5.6 70.16
t=7 3 16 5.2 60.22
t=9 6 11 7 44.95
t=9 8 20 7 34.96
t=12 10 9 9.3 24.6
t=21 4 19 17.2 53.42

and the resulting arrival SOE SOE{}" is determined. These
arrival energy values are reported in Table 4. In addition,
the minute-by-minute energy consumption of each BS
starting from the moment the EV reaches and energizes the
site is illustrated in Figure 4.

CONCLUSION

This study develops a MILP framework for dispatching
a fleet of EV's to energize BSs during disaster-induced out-
ages, with the objective of maximizing population-based
temporal connectivity under energy constraints. In the
Antakya case study (20 BS, 10 EV), the optimization yields
an extended early-stage service window, maintaining com-
munication access for 17,597 individuals over a period of
228 minutes. As the EVs gradually deplete their energy
reserves, the total covered population correspondingly de-
clines, and service ceases at 16:34 local time. These find-
ings demonstrate a viable approach to enable post-disaster
communication access without the need for additional
fixed generation resources. Moreover, integrating multi-ob-
jective planning and hybrid power resources (e.g., fuel-cell
EVs, mobile power generators, or battery trucks) could fur-
ther enhance operational effectiveness. Overall, the model
offers a streamlined tool and field-deployable mission plans
for emergency managers.
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