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ABSTRACT

Disasters frequently disable the electrical grid, jeopardizing communication infrastructure 
and causing severe disruptions in emergency communications. Ensuring rapid deployment 
of power sources for base stations (BSs) is therefore critical in post-disaster conditions. This 
study presents a mixed-integer linear programming (MILP) framework that dispatches a fleet 
of electric vehicles (EVs) to energize multiple BSs and maximizes population-based temporal 
communication coverage (people × time). In a case study involving 20 BSs and 10 EVs, the 
optimization prioritizes early service to densely populated areas and delivers a total of 17,597 
people for 228 minutes of communication access. Although the served population gradually 
declines as the energy of the EV fleet depletes, the connectivity is sustained until 16:34. Results 
demonstrate that feasible EV–BS assignments and service durations are obtained considering 
BS power demand, coverage areas, and EV initial energy parameters. The proposed model 
enables communication availability after disasters without relying on additional fixed power 
resources.

Cite this article as: Kılıç R, Candan AK, Boynueğri AR. Post-disaster EV dispatch for 
powering base stations: a MILP approach to maximize spatiotemporal coverage. Clean 
Energy Technol J 2025;3(2):39–49.

INTRODUCTION

In recent years, natural hazards, particularly earth-
quakes and floods, have increasingly threatened critical in-
frastructure systems. Power outages following such events 
trigger cascading service disruptions, severely interrupting 
daily life. Among the most rapidly affected are communi-
cation networks, whose continuity is indispensable during 
post-disaster response and recovery [1]. The earthquake 

centered in Kahramanmaraş, Türkiye, starkly revealed this 
vulnerability: of the 8,900 cellular base stations (BSs) across 
the ten affected provinces, 2,451 (28%) became non-oper-
ational. Although more than 400 mobile BSs with satellite 
backhaul were deployed, their operation relied on diesel 
generators (DGs) capable of providing only 3–4 hours of 
autonomy. Repeated service interruptions occurred due 
to severe fuel-logistics constraints [2,3]. Ensuring a stable 
power supply for BSs, the backbone of cellular communi-
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cation networks, therefore becomes a major challenge un-
der disaster conditions. Traditional power sources are often 
inaccessible or insufficient, highlighting the need for flex-
ible and rapidly deployable alternatives. Previous research 
has explored hybrid architectures. Rahman et al. [4] pro-
posed a resilient hybrid energy system (RHES) integrating 
photovoltaic (PV) generation, proton exchange membrane 
(PEM) fuel cells, and battery energy storage coordinated 
through an intelligent energy management system (EMS). 
The RHES was designed to autonomously supply Base 
Transceiver Stations (BTS) in grid-independent emergency 
scenarios. Simulation results demonstrated that BTS oper-
ability could be sustained even during prolonged outages, 
thereby maintaining reliable communication services. Sim-
ilarly, Ünal and Dağteke [1] developed PV fuel cell hybrid 
systems capable of providing uninterrupted renewable pow-
er to BS following disasters. In addition, Okundamiya et al. 
conducted a comprehensive assessment of renewable-en-
ergy-based hybrid power systems for mobile telecommu-
nication sites, demonstrating that PV–wind–battery con-
figurations can significantly reduce operational costs and 
enhance BS power reliability in regions with unstable grid 
access[5].  In a comprehensive survey, Cabrera-Tobar et al. 
emphasized the vulnerability of telecommunication infra-
structure, particularly BSs, to power interruptions stem-
ming both from technical failures and climate-induced haz-
ards. To mitigate these risks, the authors examined a broad 
set of resilience strategies structured around the phases of 
preparedness, response, and recovery, including mobile 
DGs, electric vehicle (EVs) fleets, energy storage systems 
(ESSs), and stand-alone microgrids (MGs) [6]. Rudenko 
et al. [7] similarly highlighted that replacing DGs used for 
mobile BSs with hybrid systems combining hydrogen fuel 
cells, solar power, and wind energy can ensure reliable off-
grid operation while reducing environmental impacts. Such 
hybrid configurations play a key role in enhancing the sus-
tainability and resilience of telecommunication systems.

Motivated by the growing need for rapidly deployable 
power solutions for communication systems in post-disas-
ter conditions, this study proposes an optimization-based 
framework for supplying energy to BS using EVs. The model 
jointly determines the allocation and scheduling of multiple 
EVs, each with a distinct initial state of energy (SOE), to BS 
that differ in power requirements and coverage areas [8]. The 
objective is to identify the most effective EV–BS matching 
by maximizing a population–temporal accessibility metric, 
defined as the product of the number of communications 
served people and the duration of service provision. The pri-
mary contributions of this work are summarized as follows.

A post-disaster EV fleet management framework de-
signed to sustain and extend the operational availability of 
cellular communication services by supplying emergency 
power to BS.

A rigorous optimization model that, under EV energy 
and mobility constraints, determines optimal EV–BS allo-
cation strategies to maximize population-temporal accessi-
bility during disaster-induced grid outages.

The remainder of this article is organized as follows. 
Section 2 (Methodology) describes the overall system mod-
el, outlines the modeling assumptions, and formally states 
the problem. This section also elaborates on the popula-
tion–time accessibility metric, together with the decision 
variables and the full set of optimization constraints. Sec-
tion 3 (Results) presents the case study configuration, pa-
rameterization, and numerical results derived from the 
proposed framework. Finally, Section 4 (Conclusions) pro-
vides a comprehensive synthesis of the findings, interprets 
the implications of the results for post-disaster communica-
tion resilience, and highlights promising avenues for future 
research.

MATERIALS AND METHODS

   This study examines a post-disaster scenario in which cel-
lular BS are subjected to a prolonged grid outage and an EV 
fleet is deployed as a mobile power supply resource. Each BS 
is characterized by a fixed power demand and an associated 
population density within its coverage area, while each EV 
is defined by its initial SOE and maximum power delivery 
capability. Since the number of BSs exceeds the number of 
available EVs, only a limited subset of BSs can be energized 
at any given time. Moreover, heterogeneous BS types pos-
sess different coverage capabilities and consequently differ 
in the number of users they can serve. Under these con-
ditions, the system operator must determine, over a finite 
planning horizon, which BS will be energized by each EV 
while considering the activation duration of each EV–BS 
assignment. To address this decision-making problem, an 
EV dispatch strategy is formulated as a mixed-integer linear 
programming (MILP) optimization model.

EV–BS Spatial Configuration and Distance Computation
    The primary objective of the proposed optimization algo-
rithm is to maximize the cumulative population–time ac-
cessibility (people × time) by ensuring the continuous ener-
gization of BS throughout the disruption horizon following 
a disaster. Let the discrete time domain be represented by 
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•	 MILP model optimizes EV dispatch and BS activation 
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•	 Cell-based population metrics maximize spatiotemporal 
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, the set of BSs by , and the set of EVs, utilized as 
mobile power sources, by . Prior to the disaster event, 
the spatial positions of the EV fleet are defined in a Carte-
sian coordinate system as  (1), while the geograph-
ical locations of the BS are similarly represented as  
(2), as illustrated in Figure 1. Based on these spatial rep-
resentations, the Euclidean distance between each EV and 
each BS at the initial time step  is denoted by  (3). 
Using this rate, the total travel energy required for EV  to 
reach BS  is computed as  (4). These definitions col-
lectively establish the fundamental spatial and energetic 
relationships governing the EV–BS assignments within the 
proposed optimization framework.

                         (1)

                         (2)

      (3)

                 (4) 

   Once an EV arrives at its determined BS, it immediately 
initiates the power supply. The corresponding travel time 
required for EV  to reach BS  is formally denoted as 
(5).

                           (5)

                   (6)

   The variable  (6) is defined as a binary indicator spec-
ifying whether EV  has arrived at BS  at time . The in-
dicator takes the value  when the EV reaches the 
corresponding BS, and  otherwise. For each EV–
BS pair, the arrival event can occur at most once; therefore, 

 may be assigned at exactly one time step for every 
  pair (7).

                              
(7)

Coverage Cells and Population Density
   The computation of cumulative population–time com-
munication access and population density in this study is 
carried out over a cell-based grid system. The two-dimen-
sional grid is constructed using a uniform coordinate struc-
ture defined along the X and Y axes, with each grid cell rep-
resented by its centroid, denoted as . The grid 
dimensions are given by , and the total number 
of cells is denoted by . Each grid cell has a side length of 
[km], and its area is defined as . 

    For each BS , a coordinate vector (2) 
and a coverage radius  are defined. Using these parame-
ters, a coverage matrix  is constructed for all 
grid cells. The matrix entry  if cell  lies within the 
coverage area of BS , and  otherwise. In addition, 
a binary variable  (8) is introduced to indicate whether 
cell  is covered by at least one BS.

                            
(8)

   To spatially represent post-disaster population density 
within the model, macro-circles (macro coverage areas) are 
defined. For each macro-circle , the center coordi-
nates , the radius , the central population 
density , and the edge population density  are 
specified. The Euclidean distance between the center of 
macro-circle  and the center of grid cell  is computed by 

, as given in Equation (9).

                          

(9)

   If the , the cell is considered within the cov-
erage area of macro-circle . In this case, the population 
density assigned to the cell is computed as  (10) Inside 
the macro-circle .
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Figure 1. Cartesian coordinates of EV and BS.
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(10)

Not contained within macro-circle , where :

                                        (11)

   A linear decay function is defined for the macro-circle 
population density such that the density attains its maxi-
mum value at the macro-circle center and decreases to a 
minimum at the outermost cells. If a cell lies beyond the

macro-circle, its population density is assigned as 
(11). Since a cell may fall within the coverage areas of multi-
ple macro-circles, the final macro-circle population density 
is determined as   (12) which corresponds to the 
maximum value among all macro-circles for that cell. 

                            (12)

     Finally, the overall population density for each cell 
is defined as . If the cell lies within macro-circles, its 
value is assigned as . For cells outside the 
macro-circles, the density is determined based on their 
coverage status, ensuring a seamless transition between 
high-density macro regions and the surrounding settle-
ment area. In this manner, a continuous, cell-based pop-

ulation density function is established across the entire 
study region.

   Through this formulation, the population density can be 
represented on the grid plane as a parametric and com-
putationally tractable function, allowing coverage maps 
to be directly integrated into the optimization model. In 
post-disaster scenarios in particular, these macro regions 
correspond to critical settlement areas. Figure 2. presents 
the resulting population density map, which includes both 
the macro regions and the coverage areas of the BSs.

Energy and EV–Base Station Matching
   The total amount of energy that can be supplied to all BSs 
is constrained by the initial SOE of the EV fleet (13).

           
(13)

   

At the beginning of the disaster response, each EV is 
required to be assigned to a single BS. To represent this al-
location, the binary variable  is introduced, indicating 
whether 

EV  is assigned to BS . This formulation ensures that every 
EV is allocated to only one BS.

                                
(14)

   In addition, to ensure that each BS can receive at most 
one EV: 

                                
(15)

   The EV–BS assignment is modeled as a one-to-one match-
ing. This structure prevents any vehicle from being assigned 
to multiple BSs simultaneously and likewise ensures that no 
more than one vehicle is located at a given BS. As a result, 
the distribution of energy across BSs becomes balanced and 
operationally manageable.

   This equality expresses, in a time-traceable manner, the BS 
to which each EV is assigned. For this purpose, a continu-
ous index variable  (16) is defined. The BS assignment 
determined for each EV at the beginning of the disaster 
remains fixed throughout the entire time horizon; this re-
quirement is enforced by the following equality:

                         (16)

Base Station Energy Balance
   The time-dependent SOE for each BS is denoted by 
(19). This SOE level is updated through an energy-balance equa-
tion that incorporates the previous SOE , the energy 
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consumed during the preceding time step , and the net 
amount of energy delivered by an EV upon arrival  (17). 
In this statement, denotes the initial energy available in 
EV , while represents the amount of energy the vehicle 
must expend to reach BS . Prior to the beginning of the disaster, 
the initial SOE of all BSs is assumed to be zero, i.e.,  
(18).

                 

(17)

                                     (18)

          (19)   

The inequality  (20) stabilizes the initial state of 
the system, ensuring a consistent progression of the time 
series. Moreover, this requirement prevents the SOE vari-
able from ever taking negative values, thereby preserving 
the physical validity of the model.

                                     (20)

   To enable EV to supply power to BS, each vehicle must 
possess a sufficient amount of battery energy to reach the 
corresponding BS. Accordingly, for every EV  and ev-
ery BS , an accessibility binary variable  (21) 
is introduced. This variable is determined by comparing 
the initial SOE of the EV with the travel energy required 
to reach BS . A value of  indicates that EV 
has adequate energy to reach the BS, whereas 
signifies that it does not.

           
(21)

   Based on these definitions, an EV can only be assigned 
to BSs that are energetically reachable, i.e., BSs for which 
the required travel energy does not exceed the vehicle’s ini-
tial energy. Accordingly, the assignment variables  are 
restricted by this accessibility mask, which is formally ex-
pressed in (22).

                         (22)

   If , the assignment of EV  to BS  becomes 
mathematically infeasible; consequently, any physically un-
reachable assignment combinations are automatically ex-
cluded from the model. For each BS, the power consumed 
when the BS is active  (23), is expressed directly in 
terms of its nominal power capacity. This relationship is de-
fined by the following equality:

                                (23)

   This equality expresses  as the power consumption 
of BS  at time . The term  denotes the nominal power ca-
pacity of the BS, while  (24) is a binary decision variable 
indicating whether the BS is active at that specific time step. 
When , the BS is operational and draws its nominal 
power; when , the BS is inactive and its power con-
sumption becomes zero. 

                                  (24) 

The SOE of BS  at time , expressed as (25), rep-
resents the total amount of energy stored at that BS. This 
quantity is constrained to remain non-negative at all times.

                                    (25)

A BS can be activated only if its SOE exceeds a pre-
defined minimum operational threshold. This operational 
condition (26) is formulated as follows.

                      (26)

When , BS b can be activated at time t; when, 
 BS b cannot be activated at time t. At the beginning 

of the post-disaster (i.e., t=0), all BS are assumed to be inac-
tive (27). This assumption implies that no energy supply or 
EV deployment is available at the moment the disaster oc-
curs. Consequently, it removes any ambiguity regarding the 
initial SOE of the BS and the timing of the first activation.

                                         (27)

At each time step, the number of BSs that can be activat-
ed is physically limited by the number of available EV, since 
activating any BS requires at least one energy source. This 
constraint (28) is formulated as follows.

                          
(28)

With this approach, an upper bound is imposed on 
multiple BSs are activated that can be simultaneously active 
at any given time step. This constraint enhances the consis-
tency of the model with real-world operational conditions 
and prevents physically infeasible scenarios involving un-
limited BS activations. On the other hand, for a BS to be-
come active, there must be at least one EV at its location. As 
mentioned earlier, activation is not possible in any location 
where there is no EV. This relationship is expressed as fol-
lows.

                               
(29)

As previously stated, the binary decision variable 
indicates whether EV  is located at BS . If no EV is assigned 
to BS , the right-hand side of the constraint becomes zero, 
implying . A BS can be activated only if exactly one 
EV is located at that position and sufficient SOE is available. 
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Conversely, there is no activation at any BS where no EV is 
present, ensuring that .

   The activation of a BS  is not solely contingent upon an 
EV  being assigned to that BS but also requires that the EV 
physically arrives there within a specific time step . For this 
reason, BS activation is formulated with explicit consid-
eration of EV arrival times. As previously introduced, the 
arrival indicator  (8) captures this temporal condition. 
Considering these conditions, an arrival matrix  (30) 
is defined to indicate whether an EV remains present at a 
BS  during all time steps following its arrival. This matrix 
captures the temporal persistence of an EV at BS  after it 
reaches the location.

                        
(30)

This expression indicates whether the EV has arrived at 
the BS at some time . Accordingly, the indicator  
takes the value 1 for all time steps following the arrival of 
EV  at BS . The activation of a BS is formalized through 
the product of the assignment variable and the arrival ma-
trix. This relationship (31) is expressed formally by the fol-
lowing equality.

                        
(31)

The capability of a BS to be activated precisely at the 
moment of an EV’s arrival is represented by the variable 

 (32). This binary decision variable, , takes 
the value 1 only at the exact time step when the EV reaches 
BS , and remains 0 at all other times.

                     
(32)

The variable  functions as a binary triggering mech-
anism within the decision structure of the model. When an 
EV arrives at its corresponding BS, this variable enables the 
initiation of activation at time . If an EV is both assigned to 
that BS and reaches it at the exact arrival time, then 
, thereby allowing the BS to be activated. In summary,  
is an internal model variable that triggers a specific decision 
mechanism. In contrast,  is a pre-computed indicator 
determined by parameters such as travel distance, aver-
age speed, and departure time. With respect to the energy 
threshold, the arrival of an EV alone is not sufficient for 
activating a BS at the moment of arrival; the minimum re-
quired energy level must also be satisfied. This condition is 
formally imposed by constraint (33).

       (33)

When this energy threshold is satisfied, the activation 
of the BS becomes appropriate and is mandatorily triggered 
(34). However, if the required energy level is not available, 

the BS remains inactive even if ; in such cases, the 
energy-threshold constraint prevents activation.

                                       (34)

Base Station Deactivation Condition
The activation status of each BS at time is represented 

by the binary decision variable , as previously 
defined. A transition of a BS from the active state to the 
inactive state (i.e., ) is classified as a deactivation event. 
To capture this event, a binary indicator (35) is 
utilized. The detection of a deactivation event is formally 
defined by the following linear inequality:

                              (35)

Considering this shutdown indicator, inequality (36) 
provides a consistent criterion for determining the physical 
conditions under which a BS can transition from an active 
state to a shutdown state. The left-hand side of the inequality,

Represents the total amount of energy effectively avail-
able at BS at the beginning of time step . This total con-
sists of the energy carried over from the previous minute, 

, and the net arrival energy , which is trans-
ferred only if an EV reaches the BS precisely at minute . 
The arrival energy is zero at all other time steps. The right-
hand side of the inequality,

Defines the highest permissible energy level at which a 
shutdown event can be considered physically feasible. This 
threshold ensures that the BS cannot be switched off as long 
as it possesses sufficient energy to meet its mandatory safety 
reserve  and its nominal one-minute power demand 

. Therefore, a shutdown is physically meaningful only when 

Is satisfied.

The Big-M term,

Ensures that this threshold condition is enforced only 
when the model attempts to issue a shutdown decision. If 

 (i.e., a shutdown is being attempted), the Big-M 
term vanishes and the inequality becomes binding; in this 
case, if the total energy exceeds the threshold, constraint 
(36) would be violated, preventing the model from shut-
ting down the BS. Conversely, if no shutdown is triggered 

, the large value of  relaxes the constraint, 
avoiding any artificial restriction on the natural evolution 
of the energy stock and allowing the BS to continue oper-
ating normally. Bringing all components together, the shut-
down condition is formally expressed as: 
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(36)

This formulation ensures that BS shutdowns occur only 
under physically meaningful energy conditions, thereby 
preserving both the operational realism and the temporal 
consistency of the model.

Coverage Cells and Total Population
In this section, to enable an accurate assessment of the 

total covered area and total covered population, the cov-
erage areas of the BSs are considered not only in terms of 
their geographic locations but also with respect to their 
mutual overlap relationships. Accordingly, the model de-
fines two fundamental concepts using the cell-based cov-
erage map .

Pattern coverage: refers to regions in which multiple 
BSs simultaneously cover the same cell.

Single coverage: refers to cells that are covered exclu-
sively by a single BS.

This distinction eliminates potential double-counting 
issues, ensuring that the population contained within each 
cell is accounted for exactly once in all calculations. Defini-
tion of Cells and Population Density:

•	 Cell area:  [km²/cell]

•	 Cell population density: [people/cell]

The coverage status of the BSs is represented by the bi-
nary matrix . This matrix identifies, for each cell, 
which BS provide coverage, thereby explicitly characterizing 
the active coverage relationships across the grid. Subsequent-
ly, these two data sets are aggregated within a linear frame-
work by linking them to the time dependent activation status 
of the BS. The notation used throughout this formulation is 
as follows:  denotes the set of BSs;  
denotes the grid cells;  represents the coverage 
patterns; and  corresponds to the time steps.

Pattern Coverage
In this study, a pattern is defined as a subset of cells that 

are simultaneously covered by multiple BS. Each pattern  
is represented by a vector indicating which BS contribute 
to that pattern. The pattern–BS relationship is expressed by 
the binary parameter , where  denotes 
that BS  is part of pattern .

               
(37)

Coverage Cell and Pattern 
The pattern to which a cell belongs is determined by the 

exact matching between its coverage vector and the corre-
sponding pattern vector.

                          
(38)

In other words, a cell is regarded as belonging to a par-
ticular pattern if the set of BSs covering that cell coincides 
exactly with the BS set defined by that pattern.

Single Coverage
   In order to obtain the cell-level coverage structure of the 
BSs in a detailed manner, the coverage degree deg(c)(39) 
associated with each cell is first defined. For this purpose, 
by using the binary coverage matrix  defined 
over the set  of BSs and the set of  cells (where  if 
BS  covers cell ), the coverage degree of each cell is com-
puted as

                      
(39)

The coverage degree  indicates how many differ-
ent BSs cover cell , and it plays a fundamental role in deter-
mining the single-coverage condition. Accordingly, in or-
der to distinguish the cells that are covered by only one BS, 
a cell-based binary singularity indicator (40) is defined as

              
(40)

This indicator mathematically labels the cells under sin-
gle coverage and enables the separation of multiple-over-
lap regions within the coverage matrix. To extend the 
single-coverage structure to the BS–cell dimension, the in-
dicator  is multiplied by the coverage matrix, and a new 
matrix (41) is obtained as

                     (41)

Thus,  occurs only under the following condi-
tions: (i) cell is under single coverage , and (ii) the 
only BS covering this cell is . Therefore, the ma-
trix  precisely identifies the single-coverage area specific 
to each BS by automatically separating multi-coverage areas 
and uncovered cells. Using this structure, the total number 
of cells in the single-coverage area of BS  is defined as

                               
(42)

and it is employed as a quantitative indicator of the sin-
gle-coverage capacity.

Computation of Average Single-Coverage Population 
Density

For each BS, the number of cells exclusively covered by 
that BS was defined earlier. Building on this definition, the 
total population residing within these single-coverage cells 
is denoted by  (Equation 43).

                              
(43)
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By taking the ratio of these quantities, the average popu-
lation density under single coverage for each BS is obtained 
as  (44).

                             
(44)

Computation of Average Pattern-Based Population 
Density

In this expression,  (45) denotes the total number 
of cells covered by pattern . Each pattern  represents a 
structural coverage configuration characterized by its own 
distinct set of BS.

                                    
(45)

 (46) represents the total population contained within 
the cells covered by pattern  and is expressed as follows.

                               
(46)

In this context,  captures the aggregate population 
contained solely within the cells associated with pattern . 
Patterns corresponding to densely populated regions natu-
rally yield larger   values, whereas those representing ru-
ral or sparsely populated areas exhibit comparatively lower 
population totals. Consequently, through these two expres-
sions, the average population density for pattern , denoted 
by  (47), is obtained.

                                 
(47)

Population and Cell Count Coefficients
: expresses the number of grid cells associated with 

coverage pattern , that is, the cells jointly covered by the 
same combination of BS. Likewise,  expresses the number 
of grid cells that are exclusively covered by BS , with no 
overlap from any other BS. Using these parameter values, 
the total population within the single coverage area of BS  
a fixed coefficient is computed as .

                                      (48)

The total number of people contained within the region 
corresponding to pattern , which represents the overlap area, 
is computed as a fixed coefficient and is expressed as  (49). 

                                    (49)

Pattern Activation Constraint
For a pattern  to be activated , at least one of 

the BSs constituting that pattern must be active, and this 
requirement is expressed by inequality (50). If pattern  is 
not active , none of the BSs associated with that 
pattern is allowed to operate, and this condition is captured 
by inequality (51).

 BSs activation decision variable

 Pattern activation variable, whether pattern 
 is active at time  is determined by its corresponding acti-

vation variable.

                            
(50)

                                       (51)

Total Population Served
At time step , the total population served is defined as 

the weighted aggregation of all active coverage patterns and 
active single-coverage BS regions, where  denotes the 
population weight of pattern  and  represents the mean 
population coefficient associated with the single-coverage 
area of BS . This relationship is expressed as

              

(52)

Objective Function
The objective is to maximize the total number of 

people served within the communication coverage area 
throughout the disaster period. This is formulated as fol-
lows in (53).

                                  
(53)

This objective function implicitly governs the allocation 
of energy‐supplying EV to BS by steering the optimization 
process toward configurations that yield the greatest com-
munication reach. In effect, it mathematically determines 
which subsets of BS should be activated so as to maximize 
the population maintained under operational coverage 
throughout the disaster period.

RESULTS

The case study focuses on the district of Antakya, locat-
ed in the Eastern Mediterranean region of Türkiye and one 
of the areas most severely affected by the Kahramanmaraş 
earthquakes of 6 February 2023. The test system consists 
of 20 BSs serving all mobile network operators in Antakya 
and 10 EVs that can be deployed as mobile power sources. 
The initial SOE levels of the EV fleet are provided in Table 
1. For operational safety, each EV is assigned a minimum 
SOE threshold of  (17) (1 
kWh), which must be preserved in the battery at all times 
and cannot be used for powering BSs. For mobility model-
ing, a constant travel-energy consumption rate of  
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W·min per kilometer is assumed for all EV, reflecting an av-
erage traction demand during displacement. Additionally, 
the average travel speed of the EVs is modeled as uniform 
and set to  km per minute, providing a consis-
tent basis for computing travel times across the network. 
During the earthquake, 64 of the 67 rooftop BSs in Antakya 
were destroyed or severely damaged, whereas 32 of the 34 
tower-type BSs remained operational [9]. Consistent with 
these findings, a tower-based configuration representative 
of urban/suburban deployments has been adopted as the 
reference model in this study. In the population model used 
in this case study, cells located outside all macro-circles 
but within the coverage area of at least one BS are assigned 
a density of  people per cell, while cells lying out-
side both macro-circles and BS coverage areas are assigned 

 people per cell.
The proposed MILP model was developed in Python and 

solved using the Gurobi Optimizer (version 11.0.3). All simu-
lations were performed on a computer with an Intel i5-7200U 
processor and 12 GB of memory. The total solution time for 
the Antakya case study was approximately 31 minutes.

The power requirements of BS vary on the order of sev-
eral kilowatts, depending on factors such as radio configu-
ration, transmission power, and site-specific auxiliary loads 
(e.g., cooling). Capacity-oriented small-cell deployments 
in higher frequency bands (e.g., 1800–2600 MHz) typical-
ly consume up to approximately 1 kW[10] [11], whereas 
macro sites operating in sub-GHz bands (e.g., 700/800/900 
MHz) and providing wide-area coverage may require 5 kW 
or more when cooling and ancillary systems are included 
[4][12][13]. Cooling alone often accounts for 25–30% of 
total site energy consumption[14][15]. For this reason, the 
study incorporates different BS types. The BS-specific pow-
er demands and coverage radii used in the case study are 
reported in Table 2.

In this model, the EVs begin supplying power to the BSs 
starting from minute 2. By minute 21, all EVs have reached 

their assigned BSs and have energized them using their ar-
rival SOE . At minute 21, the total number of peo-
ple able to maintain communication reaches its maximum 
value of 17,597, as demonstrated in Figure 3. This result is 
reported in Table 3.

The matching between the EV and the BS is provided in 
Table 3. Based on these assignments, the energy consumed 
by each EV while traveling to its designated BS is computed, 

Table 1. The initial (SOE) of the EVs.

EVs Initial SOE (kWh)

1 71

2 66

3 61

4 56

5 51

6 46

7 41

8 36

9 31

10 26

Table 2. Coverage areas and power consumption of BSs.

BS index BSs coverage area (km2) BSs power (Watt)

1 3.7 4000

2 4.1 5000

3 4.5 6000

4 5 4500

5 5.7 5500

6 6.6 6500

7 6.9 4200

8 4.1 5200

9 4.5 6200

10 5.1 4800

11 5.7 5800

12 6.4 6800

13 6.9 4100

14 4.1 5100

15 4.7 6100

16 5.1 4300

17 5.8 5300

18 6.4 6300

19 6.9 4900

20 4.1 5900
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Figure 3. Population covered by bss post-disaster (people).



Clean Energy Technol J, Vol. 3, No. 2, pp. 39-49, December, 202548

and the resulting arrival SOE  is determined. These 
arrival energy values are reported in Table 4. In addition, 
the minute-by-minute energy consumption of each BS 
starting from the moment the EV reaches and energizes the 
site is illustrated in Figure 4.

CONCLUSION

This study develops a MILP framework for dispatching 
a fleet of EVs to energize BSs during disaster-induced out-
ages, with the objective of maximizing population-based 
temporal connectivity under energy constraints. In the 
Antakya case study (20 BS, 10 EV), the optimization yields 
an extended early-stage service window, maintaining com-
munication access for 17,597 individuals over a period of 
228 minutes. As the EVs gradually deplete their energy 
reserves, the total covered population correspondingly de-
clines, and service ceases at 16:34 local time. These find-
ings demonstrate a viable approach to enable post-disaster 
communication access without the need for additional 
fixed generation resources. Moreover, integrating multi-ob-
jective planning and hybrid power resources (e.g., fuel-cell 
EVs, mobile power generators, or battery trucks) could fur-
ther enhance operational effectiveness. Overall, the model 
offers a streamlined tool and field-deployable mission plans 
for emergency managers.
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